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Abstract

We consider a modification of a path-following infeasible-interior-point algorithm
described by Wright. In the new algorithm, we attempt to improve each major iterate
by reusing the coefficient matrix factors from the latest step. We show that the modified
algorithm has similar theoretical global convergence properties to those of the earlier
algorithm, while its asymptotic convergence rate can be made superquadratic by an
appropriate parameter choice.

1 Introduction

We describe an algorithm for solving the monotone linear complementarity problem (LCP),
in which we aim to find a vector pair (x,y) with

y=Mz+gq, (2,9)>0, 2'y=0, (1)

where ¢ € R" and M is an n X n positive semidefinite matrix. The solution set to (1) is
denoted by S, while the set §¢ of strictly complementary solutions is defined as

S ={("y") eS[a"+y" > 0}.

Our algorithm can be viewed as a modified form of Newton’s method applied to the
2n x 2n system y = Mz +¢q, zy, =0, i =1,2,--- n, in which all the iterates (z*,y*) are
constrained to be strictly positive. For feasible starting points, this primal-dual interior-point
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approach was first proposed by Kojima, Mizuno, and Yoshise [4]. Superlinearly convergent
methods of this type have been described by a number of authors, including McShane [7],
Ji, Potra, and Huang [1], Ji et al. [2], and Ye and Anstreicher [19]. The paper of Ye and
Anstreicher is particularly interesting because several asymptotic bounds on the steps proved
there are used in later works. It also gives a detailed development of superlinearly convergent
methods to that time.

More recently, primal-dual algorithms that do not require feasible starting points have
been the focus of active research. Zhang [21] described an algorithm with polynomial com-
plexity. In later work, Potra [14], Potra and Sheng [15], Wright [16, 17, 18], and Monteiro
and Wright [11] have described superlinearly convergent infeasible-interior-point methods.
The algorithm we describe in this paper also falls into this class. It is an extension of the al-
gorithm of Wright [18], which is in turn based on the work of Zhang [21] and Wright [16]. As
in [18], the algorithm extends immediately to mixed monotone LCP with few complications.

The algorithm of this paper can be motivated by considering the following locally conver-
gent algorithm for solving the system of nonlinear equations F'(z) = 0, where F': RY — RY
is continuously differentiable.

Choose 7 € (0,1), I >0, z2° € RY; set k « 0;

loop:
compute d* = —VF(z*)71F(2%); 2 « 2% 4 d¥;
for ¢=0,1,---,1 (improvement loop)
compute d = =V F(z%)7 1 F(z);
it |+ ) < rllF )]
then 2 — 24+ d
else 2!« 2k« k+1; go to loop;
end for
Y 2ok — k+1; go to loop.

On each iteration, this method takes a single Newton step and follows it up with a number
of Newton-like steps calculated with the Jacobian VF(2*). Simple analysis shows that if z*
is an isolated solution to the system F'(z) = 0 with VF(z*) nonsingular, and if ||z — 2*||
is small enough, then {z*} converges to z*. Moreover, the inner loop (with iteration index
i) eventually executes for all [ iterations before control passes back to the main loop and,
assuming that VF(z) is Lipschitz continuous at z*, the convergence has Q-order [ + 2 (see,
for example, [12]). Note that for each value of k, the Jacobian VF(z¥) is evaluated and
factored only once and, in many contexts, the steps d calculated in the improvement loop
are not expensive to compute.

Our algorithm, which we describe in Section 2, is identical to that of [18] in that it
takes steps of two types—safe steps, which ensure global convergence, and fast steps, which
ensure fast local convergence. As in the model algorithm above, each step is followed by an
attempt to improve the new iterate without recomputing and refactoring the main coefficient



matrix. The inner loop terminates when it fails to make significant progress or after [
iterations, whichever comes first. Additional complications arise because of the need to
keep the iterates strictly positive and in a wide neighborhood of the central path. These
requirements necessitate a certain amount of quite technical analysis, which we present in
Sections 4 and 5. The global convergence and complexity analysis is identical to that of the
algorithm in [18], which differs from the present algorithm only in the lack of an improve
phase. We state the relevant results, omitting most of the details, in Section 3. Some
preliminary numerical results appear in Section 6.

The idea of reusing the matrix factors first appeared in Karmarkar, Lagarias, Slutsman
and Wang [3]. Mehrotra presented a practical implementation of a predictor-corrector al-
gorithm that reuses the matrix factors in [9] and an asymptotic theoretical analysis in [8].
Mehrotra’s theoretical algorithm differs significantly from the practical method. It requires
strict feasibility of all iterates, and it uses the Mizuno-Todd-Ye [10] predictor-corrector frame-
work, which confines the iterates to a narrow Euclidean-norm neighborhood of the central
path and requires corrector steps (and hence extra matrix factorizations) to be performed
regularly. Our algorithm achieves rapid asymptotic convergence like that described in [§]
but for a wider class of problems (LCP). Moreover, our algorithm is closer to computational
practice in its use of infeasible iterates and a much wider neighborhood of the central path.

In the remainder of the paper, we use R), to denote the nonnegative orthant in IR".
Subscripts on matrices and vectors indicate components, while superscripts on matrices and
vectors and subscripts on scalars denote iteration numbers (usually k).

2 The Algorithm

To describe the step between successive iterates, we define for any vector pair (x,y) €
IR”} x R% the following quantities:

,u::L'Ty/n, T:y—Ml'—q, 62(1717"'71)T7
and, for any vector z € R},
X = diag(x) = diag(xq, 22, -, x,).

When (z,y) = (zF, y*) (that is, the k-th iterate of the algorithm), we use r*, u,, and X* to
denote r, p, and X, respectively.

During the k-th iteration of the main loop, each search direction (u,v) and step length
& 1s calculated as follows.

Given (z,y) >0, 3 € (0,1), 5 € [0,1), 5 € [0,1), solve

l%}illZ]:[—XY;—&ﬂe]' (2)



Set

& = arg min p(a) 2 (¢ +au)’(y +av)/n, (3)
ae|0,a

where & is the largest number in [0, 1] such that the following inequalities are satisfied
for all a € [0, &]:

(1—3)(1 —a)zTy, if r # 0 (4a)

(2 + au)'(y + av) i
Gfn)(e+aw(y+av),  j=1,m  (4b)

>
(2; + auy)(y; + av;) >

The inequality (4b) ensures that the component-wise products x;y; approach zero at ap-
proximately the same rate. They stay in a wide neighborhood of the central path, where
xjy; = pforall y =1,--- n — hence the term “path-following.” The inequality (4a) ensures
that when the current point is infeasible, the decrease in infeasibility ||r|| on the current step
is at least as great as the decrease in the complementarity gap p, modulo a factor of (1 — B)

The basic form of our algorithm, given below, is the same as the one described in Wright
[18] except for the addition of the improve procedure.
Given 7 € (0,3), Ymin and Ymax With 0 < Ymin < Ymax < 3, 7 € (0, 3),
p € (0,7), and (2% ¢°) with 2§y? > Ymaxpto > 0;

to — 1, Y0 < Ymax, £ — 0, vp « 1;

while g, > 0
solve (2)7(4) with (l‘, y) = (xkv yk)v o=0, B = :Vtkv Y = Ymin + ﬁtk(’}/max - ’Vmin)§
if (2" +au) (v + av)/n < pu
then @geﬁ,thk—l—l,’nyy;
else solve (2)—(4) with (z,y) = (2%,y%), 6 € [0,3], =0, 7 = W
Br — 0,1 — tg, v — i;
end if
ayp — &, o — 7, v (1 —ap), (z,y) — (2, y%) + ar(u,v);
improve ((z,y),t,v,7, (2", y"));
thp1r — b Vi1 — Uy Yegr — 7, (LMY — (2,y), b — k4 1
end while.

We refer to the steps that are computed with ¢ = 0 as fast steps because they lead to
rapid local convergence, while the steps with & € [, %] are safe steps because they ensure
global convergence.

The improve procedure, which reuses the coefficient matrix in (2) to improve the new
iterate, takes a combination of safe and fast steps, just like the main algorithm. The main
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difference is that the procedure is terminated if an improvement in g of at least a factor of
T € (p, 1) is not achieved. The user supplies the parameter 7 and the nonnegative integer 1,
where [ is the maximum number of steps that can be taken in improve.

improve ((z,y),t,v,7, (wkvyk))
Given 7 € (p,1), I >0,

for:=1,2,---,1
if ¢ =0 then return;
solve (2)7(4) with & =0, B = :Vtv ¥ = Ymin + :Vt(’}/max - ’Vmin)§
if (o4 au)(y+av)/n < pp
then ¢ —t+1, v« 7;
else solve (2)-(4) with & € [7, 1], B3=0,%=m;
if (x + du)T(y + av)/n > 7 then return;
end if
ve—v(l—a), (z,y) « (z,y) + a(u,v);
end for.

In the special case I = 0, improve is vacuous and the algorithm reduces to the method
of [18]. We refer the reader to that paper for the intuitive motivation behind the use of safe
and fast steps.

Some of the fundamental properties of the iteration sequence (z¥, y*) are not affected by
the inclusion of the improve procedure. We still have

rF = ppr? (5)
and also the following result, which is similar to Lemma 3.1 of [17].

Lemma 2.1 Suppose that the initial point is infeasible, that is, r® # 0. Then the positive
constant 3 defined by

B = ﬁ(l—v’“)

s such that kH

N

A r
fr = Bugpo = 3

[l

We also have the following result, which shows that the algorithm either terminates finitely

Ho, vk Z 0.

at a solution of (1) or else generates an infinite sequence {(z*,y*)} of strictly positive iterates.
The proof is a simple modification of [18, Lemma 3.2] and is omitted.

Lemma 2.2 For all iterates generated by the algorithm, we have either (2%, y*) > 0 or else
HE = 0.
We assume throughout the remainder of the paper that finite termination does not occur,

that is, all iterates (%, y*) and all the intermediate points (z,y) generated in the improve
procedure are strictly positive.



3 Global Convergence

The analysis of global convergence and polynomial complexity is nearly identical to that of
[18, Section 3]. We need only note that (5) still applies and that all iterates (z¥, y*) satisfy
:L'fyf > Yminflk, J = 1, -+, n. The intermediate points generated by improve have the same
properties. The technical results from [18, Section 3] can therefore be applied to show that
nontrivial progress is made at each safe step. The presence of improve and the fast steps
cannot hinder (and very often speed) the convergence.

In this section we summarize the main results from [18, Section 3] and state the sole
assumption required for global convergence, which is as follows.

Assumption 1 S # 0.
Theorem 3.1 If a safe step is taken at iteration k, then there is a constant w > 0 such that

the step length ay has

Qap >

I e

If the initial point (2°,y°) is chosen as
(2% %) = (&oe €ye), (6)
where
ez el &2 MW e &2 Mlalle, & 2 IMeflcbe = [Ma®]|o,  (7)
Jor some (z*,y*) € S, then w = O(n?).

Proof. See [18, Lemma 3.4, Theorem 3.5], where a different definition of w is used. [
The main global convergence result is as follows.

Theorem 3.2 The complementarity gap pi converges geometrically to zero.

Proof. Asin Wright [18, Theorem 3.6], we can show that if a safe step is taken at iteration
k, we have

(2% + )T (" + apv)/n < (1 — i) U
while if a fast step is taken, we have
(% + ) (4" + o) < ppa.
Since the complementarity gap may be decreased further by improve, we have . <
(l‘k + ozku)T(yk + ayv)/n and therefore

1
Pr+1 < max (1 - —,p) s
4w

from which the result follows. [
Finally, we state the polynomial complexity result.



Theorem 3.3 [18, Corollary 3.7] Let ¢ > 0 be given. Suppose that the starting point is
defined by (6), (7), where po = £,£, < 1/€” for some constant T > 0 independent of n. Then
there is an integer K. with

K. = 0(n*log(1/e))
such that py < e for all k> K..

4 Technical Results

In the remainder of the paper, we turn our attention to the latter stages of the algorithm.
We show that the algorithm eventually takes only fast steps (that is, the then branch of
the main conditional statement is executed). Moreover, the improve routine eventually
takes fast steps on all I of its iterations, so that a total of I + 1 fast steps is taken for each
factorization of the coefficient matrix in (2).

In this section, we prove some results about the steps generated in this fast phase of the
algorithm. In particular, we look at the effects of the inexact coefficient matrix in (2) on the
steps calculated within improve.

We start by defining the two assumptions for the local convergence analysis, which will
be implicitly assumed to hold throughout the remainder of the paper.

Assumption 2 S§°¢ = ().
Assumption 3 § is bounded.

For monotone LCP, a sufficient condition for Assumption 3 is the existence of a strictly
feasible pair (z,y) such that y = Mz + ¢, (z,y) > 0. This can be seen from the fact that for
any (z*,y*) € S

(" =)y —y)= (=" —2) ' M(2" —2) >0,
implying
y gl <y,
By choosing any particular strictly complementary solution (x*,y*), we can define index

sets B and N by
B={jla;>0},  N={j[y; >0}

It is well known that the global convergence of the algorithm guarantees that the iteration
sequence {(z*,y*)} approaches the solution set S (see the error bound result of Mangasar-
ian [6], for example). Therefore, Assumption 3 implies the boundedness of the iteration
sequence {(z*,y*)}, as given in the following lemma.

Lemma 4.1 There is a positive constant Cs such that ||(z*,y*)|| < C3 for all k > 0.



The next two results are simple modifications of results from Wright [18, Section 4].
Since we will apply these results to intermediate points generated by improve as well as to
the main iterates (z¥,y*), we state them in a more general form than in [18]. The proofs
are, however, not affected. Boundedness of the iteration sequence is not necessary for either
result, and neither is Assumption 3.

Lemma 4.2 ([18, Lemma 4.1]) Let (x,y) > 0 be such that
r=y—Mz—q=uvr’ forsomel/E[O,%],
and p = zTy/n > Bl/,uo for this value of v. Then for some constant Cy > 0 we have
Jenll < Cap, lysll < Cap. (8)

Lemma 4.3 Let (x,y) be any point with the properties defined in Lemma 4.2, and suppose
in addition that x;y; > Yminpt. Let (u,v) be the search direction obtained by solving

R E R R o

where & € [0,1). Then there exists a positive constant Cs such that

ST~

lun| < Csp, ||osll < Csp. (10)
If in addition ¢ = 0, there s a constant Cg > 0 such that
lus|l < Cop,  |[on]l < Cop. (11)

Proof. Follows from Lemma 4.2 and Theorem 4.5 of [18]. ]

We now turn to the “approximate” fast steps computed by (2), where (x,y) is either
the current iterate (2%, y"*) or some intermediate point generated in the call to improve at
iteration k. It is obvious from the algorithm definition that we have

p=aly/n < . (12)

We also assume that the point (z,y) is not too far from (z*,y*) in the sense that there is a
constant y > 1 independent of k& such that

(2" — 2, y% — )| < xpr- (13)

Later, in Theorem 5.1, we choose a particular value of y that ensures that (13) is eventu-
ally satisfied by all intermediate points generated by the procedure improve. Hence, the
remaining results in this section apply to all iterates visited during the improve phase.
The following result describes some characteristics of the actual search direction (u,v)
calculated from (2), partly in terms of the exact search direction (u,v) that satisfies (9).



Lemma 4.4 Let (x,y) be a vector pair satisfying the assumptions of Lemma 4.3 and, in
addition, the properties (12) and (13). Then if & = 0, there are positive constants C7, Cs,
and Cy independent of k and x such that the following bounds are satisfied:

Ju—all < Crxp, o= 0| < Coxp, (14)
1(w, v)[| < Csxpe, (15)
lan —un|| < Coxppr,  ||oB — vall < Coxpupuk. (16)

Proof. From (2), we have that

[%;HH:l_;ye] (17)
while from (9), we have )
H{ ;(]Hﬂzl—xrye]’ (18)
and therefore
[y’“ )_(H[H:[_XYeJr(yk_;)qu(Xk_X)v]. (19)
From (17) and (19) we obtain
l% *)_(i][Z:Z]:[(Yk_y)uﬂ(Xk_X)v]' (20)

Now from (13) and by applying Lemma 4.3 to (18), there is a constant C; independent of k

and y such that )
[(V* = ¥+ (X = X)) < Cryup 1)

Defining
Dk — ()(k)—l/2(5/k)1/27

and multiplying the lower block in the system (20) by (X*Y*)~/2  we obtain
D*(a —u) 4+ (DM Mo —v) = (XFYF)TV2[(YF — V)a + (XF — X)o). (22)

Using the upper block of (20), we have (v — v) = M(u — u), and so it follows from positive
semidefiniteness of M that
(u— u)T(T) —v) > 0. (23)

By taking the Euclidean norm of both sides of (22), and using (23), we have

1D* (@ = w)[|* + [[(D*)~ (v = o)I* < XY 2PN = Yu + (X = X)ol?,



Therefore

1D* (@ — )
I(D") (@ =)

Y2 (v = Y)
Y)Y = Y)a

I~

<

Now since :L'fyf > ~Yminftk, we have

(Y)Y = max (kyh) 2 < n P

1 min
Therefore from (21) we have
1D (@ — )| < Coxyam iy
Taking any j = 1,---,n, we find that

( ;6)1/2 B
(i?)l/g (u] - uj)

< || D*(a = w)|| < Coxvmi .

Hence,

(wk)l/z = —1/2  1/2
uj —u;| < max 2707X7mi1{ oy

G=1,.n (y] )1/2

3
@’ _
< max = Cox Y it
ol (2 F) 2 k
Cs A 12 12
< TWC?X’Ymm/ /Wk/
VminHk
< &

\/—EXM’

for C'; defined in an obvious way. We have proved the first inequality in (14); the proof of
the second inequality is similar.
For (16), we repeat the logic above to obtain for ¢ € N that

_ (wk)l/z = -1/2  1/2
Yj
< e Cor XYt
> T /9 Y7 X min k
(zhyf)L/?
C4Mk ~ -1/2  1/2
< mcﬂ(’ymin/ N:uk/
minluk
< Co

\/—EXWM“

10



where Cy is defined appropriately. The bound for ||vg — vg|| follows similarly.
To prove (15), we have from Lemma 4.3 and (14) that

o 0)l| < Il o)l + l(u = @, v — o) < 2(Cs + Co)p + 207 < Coxe

where we have defined Cs = 2(C5 + Cg 4+ C7) and used the assumption that y > 1. (]

We now state the main result of this section, in which we obtain an estimate for the step
length & along a (possibly approximate) fast step direction (u,v). The point (x,y) considered
in this theorem represents either the main iterate (z*,y*) itself or one of the intermediate
points generated by improve during iteration k. The following positive constants, all of
which are independent of & and y, are used in this result.

Cio = Co(Cs 4+ Cg) + C7(Cy + Cs)
Cio = 2(C5Cs+ Cho + C7CY)
2Cho
Ciy = —
" (L = %) (Ymax — Ymin)
Cis = 2(C5Cy+ C4C7 + 082)7
Ciy = Cia+ Ciz/n.

Theorem 4.5 Let (x,y) be a point that satisfies the assumptions of Lemma 4.4, and in
addition

2
13X

< min {1, — (24)
min .
Iu — Y C
Let t be a positive integer such that for v defined by
Y = Ymin + :}/t_l(’ymax - ’Vmin)

we have x;y; > yp for g =1,---,n, and suppose for this value of t that

014X2ﬁ <p. (25)

3

Then if a fast step is attempted from the point (x,y) with

o= 07 ﬂ = ’7t7 5/ = “Ymin T+ ’yt(’)/max - ’Vmin)y

and the search direction (u,v) is calculated from (2), the resulting step length & obtained
from (2), (3), and (4) satisfies

621 - O
5
Moreover, the fast step is accepted with
(x + &u)T(y + av)/n < 014)(2%/1. (26)

11



Proof. The proof is in three stages. First, we show that the tests (4) are satisfied for all
« in the range

[0, 1 — Cmﬁ%] . (27)

Second, we show that u(«) defined by (3) is decreasing on the interval « € [0,1]. Third, we
show that

- HE
p(a) < 014X2¥N < pu, (28)

which proves the result.
We first consider the condition (4a). From the left-hand side, we obtain

(v + au)(y + av)
= (¢ +ou+alu— ﬂ))T(y + av + a(v — v))
) + aly 4+ av)’ (u — u) (29)
—|—oz2(u — E)T(v — ).

Now, using Lemma 4.1 and the inequalities (8), (10), (11), (14), (15), and (16), we have
|ﬂT17| S 2050&&2 S 20506/L,Mk
and

Jun — un|[(lyn |l + lon ) + llus — usl|(lysll + l[vsll)
Coxppn(Cs + Copt) + Crxp*(Ca + Cs)
CroX i,

[(u—a)" (y + av)|

IA A A

where we have used g <1 and p < py to derive the last inequality. Similarly, we have
(v —0)" (& + aw)| < Croxpp,
while for the remaining term in (29) we have from Lemma 4.4 that
[(u—a)" (v = 0)| < 207Cox i py < 2C:Cox>pup.
Hence, since y > 1, we have from the definition of (o that
‘(:1; + ozu)T(y +av)— (1 - oz):z;Ty‘ < ChroX’ppi. (30)

Since § = 4%, we have that (4a) is satisfied provided that

Crox*py < (1 —a)y'np,
which is certainly true provided that

2
S Chox Pk

1 —
o~ n'j/t

12



From the definition of Ciq, since 1 — 5 and ~max — Ymin both lie in the range (0, 1), we have

ClOXQ,Mk < CI2X2,Uk
n:}/t — ,Tyt ?

so the inequality (4a) certainly holds for all v in the range (27).
Turning to the second inequality (4b), we have by an argument similar to the one above
that

(2 + au)(y; + avy) = 2jy;(1 — a) = Crox?ppr = (1 — @) = Crox*pp,
while from (30), we have
(& 4 au)’(y +av)/n < (1 —a)p + Crox*ppx/n.
Hence, the inequality (4b) holds provided that
Tl = a) 4+ Crox* pur(3/n) < p(l — @) = Crox’ g,
which is certainly true whenever the inequality
(v =)L = a) = 2C0x" (31)
holds. Since
¥ =% = [min + 7™ (Ymax = Yanin)| = [Fenin + 7 (Ymax = min)| = 771 = 7) max = Yonin)
we find that (31) holds whenever

2C0x 1k
— ~t—-1

l—a> — ,
AT = ) (Ymax — Ymin)

which, by definition of Cys, is true for « in the range (27).
For the second part of the proof, we show that u(«) defined by (3) is decreasing on the
range a € [0,1]. Taking the derivative, we have

np'(a) = (:L'Tv + yTu) +2aulv
= (:L'TT) + yTﬂ) + :L'T(v —0)+ yT(u —u)+ 20uT v
= —:L'Ty + :L'T(v —9)+ yT(u —u)+ 2au’v. (32)

However, we can use Lemma 4.1 and relations (8), (14), and (16) to obtain

2" (v — 0)] |zs||[lvs — vl + ||lexl|lon — vn]|
CsCoxppir + C4C7X,M2

(C3Cy + CoCr) X fufin, (33)

IAIA A
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where we have used g < py in the last inequality. A similar bound can be obtained for
lyT(u — u)|. For the final term in (32), we have

o] < CIXPp® < O ppn. (34)
Substituting these relations in (32) and using the definition of Cy3, we obtain
np' (o) < [=n—+ Crax*pilp.

It follows from (24) that the term in brackets is negative, and hence p'(a) < 0 for all
a € [0,1].

Finally, we observe that the step length & actually selected by the procedure will be at
least as long as the upper bound of (27). Hence, using (33), (34), and the definitions of (3
and C14, we have

(z + au) (y + aw)

< aly(l—a) + el (v = 0)[ + |y (u — @) + |u'o]

< (J?T?J)CHXQ% +2(C5Cy + CoCr)x s + 082X2,M,Mk

< (@) ZHCn + Crafaly?

i

= (J?Ty)ry—IZCMXz-
Therefore (26) holds. Acceptance of this step follows from (25), since we have (z + au)? (y +
av)/n < ppu. ]

We close this section with a result that is important in defining the onset of the algorithm’s
fast phase.

Lemma 4.6 There is a constant n < 1 such that

Hr+1 Kk
,7tk+1 = n%’ vk > 0. (35)

Proof. When the safe branch of the main algorithm is taken at iteration k, we have from
the proof of Theorem 3.2 that

(o ) (o ao)fn < (1= )

while the value of ¢ is unaltered. In the subsequent call to improve, the value of ¢ might be
incremented. Whenever this happens, we are guaranteed that the complementarity gap u
decreases by a factor of at least p, so the ratio p/5* will also decrease by a factor of at least
p/7v < 1. Hence, when the safe branch is taken, we have

1
< (1- o) B
f}/ E+1 4w f}/ k

14



When the fast branch is taken, we have ¢t « ¢ + 1 and
(2" + au)" (v* + av)/n < ppr,

so the ratio y /3" decreases by a factor of at least p/7. The comments above ensure that the
subsequent call to improve can only accentuate this decrease, so in this case we have

Hi+1 P Mk

W“ At

The result is obtained by defining

5 Local Convergence

In this section, we state and prove our two main local convergence results. First, we define a
threshold value of yy /4% below which both the main algorithm and the procedure improve
take only fast steps. Second, we show that the resulting superlinear convergence has Q-order

I+2.

Theorem 5.1 Define

C
— (¢ e (2L (30
and let Ky be the smallest index such that vy, <1/2,
014X275\B:_1 =P, (37)

and

MmsHm(L—ﬂj. (38)

Cisx?

Then the fast branch is taken in the main algorithm and, moreover, I fast steps are taken in
the call to improve.

Proof. Existence of K is guaranteed by Lemma 4.6. We choose any & > K;. Our proof
proceeds by showing first that the step taken from (2%, y*) in the main algorithm is a fast
step. We then prove by induction that [ fast steps are taken inside the procedure improve.
Our main tool in both cases is Theorem 4.5.

For the first part of the proof, we apply Theorem 4.5 with

(l’,y) = (xkvyk)v = tka Y=k (39)
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Note that the point (z,y) satisfies the assumptions of Lemmas 4.2 and 4.3 (by definition of

Ky, %, vg, etc.) and the conditions (12) and (13) (trivially). Clearly also :L'fyf > g pp for

all j =1,---,n, and the condition (24) also holds. Because
[

i k .
C14X2% = 014X2% < CMX?’TS% < C14X

2 MK,
7151(1-%1 =/

the condition (25) also holds. Hence the conditions of Theorem 4.5 are satisfied by the
choices (39), and therefore a fast step is taken by the main algorithm.

We turn now to the procedure improve. Our aim is to show inductively that if (z,y) is
the current vector pair at the commencement of the ¢-th iteration of this procedure, then

1—1

(2%, 5") = (. )l < |2(Cs + Co) [T+ Csp') | g (40)

=1

Moreover, we show that a fast step is taken from this vector (z,y) during the ¢-th iteration
of improve. Note for future reference that

i—1 i—1 i—1
log JT(1 + Csp') = log(1 + Csp') <> Cep' <
=1 =1 =1

and so
i—1

2(C5+C6)H(1+08p1)§>(7 Z:177]

=1
Consider the case ¢ = 1, that is, the first iteration of improve. We aim to use Theorem
4.5 again, so we start by checking that the point just generated by the main algorithm
satisfies the assumptions of this theorem. In other words, the choices

(l’,y) = (xkvyk)—l_ak(uvv)v t:tk‘l‘L

must be shown to satisfy these assumptions. It is easy to see that the assumptions of Lemmas
4.2 and 4.3 and the condition (12) are satisfied. To see (13), note that the fast step just
taken at iteration k of the main algorithm was computed with an ezact coefficient matrix,
that is, we have (u,v) = (u,v). Hence we can apply Lemma 4.3 to deduce that

1(2*, %) = ()l < Nl )] = (1@, 9)|| < 2(Cs + Co)pse

Thus the bound (40), and therefore also (13), holds for this point (z,y). The conditions (24)
and x;y; > yu clearly hold, while (25) also holds because

2Mk 2 Mk 2 Mk 2 MK,
Clax Eo Chax S < Cax ST < Chax St <p

Hence Theorem 4.5 applies, and we have shown that a fast step is taken on the first iteration
of improve.
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We now consider the general iteration ¢ of the internal loop of improve. We assume that
our assertions hold for iterations 1 through ¢ — 1. Let (27, y~) denote the value of (x,y) at
the start of iteration ¢ — 1, and let (u=,v™) be the search direction calculated during this
iteration, while as before (z,y) is the current point at the start of iteration i. To obtain an
estimate of ||(z*,y*) — (2, )|, we note by our inductive hypothesis (40) that

i—2
(2%, 5") = (27,9 7)ll < [2(C5 + Co) [T(1 + Csp) | g

=1

We now apply Lemma 4.4 to the step (u™,v™) taken during iteration 7 — 1, with y replaced
by 2(Cs 4+ Ce) TT/Z3(1 + Csp'), to find that

(=", y") = (2, w)
< S y") = Tyl + Ty 7) = ()]

1—2
< 2(Cs 4 Co) TT(1 + Cap ) + | (u™07)|

=1

i—2 i—2
2(Cs + Co) [T(1 + Csp)pr + Cs [2(05 +Ce) [T(1 + Csp')| 1~

IA

i—2
< 2G4 o TI+ 0| (14 Cop ™

=1
The final inequality follows from the fact that u= < p*~!uy, since (z7,y7) is arrived at by
taking ¢ — 1 fast steps (one step in the main algorithm, followed by 7 — 2 iterations of the
improve loop), at each of which a reduction factor of at least p is achieved. We have now
shown that the bound (40) continues to hold at iteration ¢. It is easy to check that the
remaining conditions required by Theorem 4.5 hold. We mention only (25), which holds for
t =1, + 1 because

[t 2k ) I
ST < Crax St < Chrax St =

o Mk
t

Chrax” = :O14X2
>

Hence, we can apply Theorem 4.5 again to deduce that a fast step is taken at iteration z,
and our result is proved. [

Our final result is to show high-order convergence of the sequence {u} to zero. We show
that this convergence has a ()-order of at least I + 2, that is, for any € > 0

1 Pl g
im sup —75—
k—o0 k

An equivalent characterization of the Q-order I + 2 convergence is the inequality (41) below

(see Potra [13]).

Theorem 5.2 The subsequence {pur}, k = 0,1,--+, converges to zero with QQ-order I 4 2,
that is,

1
liminf 8L > 149 (41)
k—oco Og Jjiys

17



Proof. Consider £ > K. Since a fast step is taken by the main algorithm and all [
iterations of improve, and since Theorem 4.5 applies at all I + 1 steps, we can apply the
inequality (26) I + 1 times to bound pj41 in terms of yg. The process yields

I+2

I-|—1 2(I41) Hi
i < Oy SN+ IT+)]2 (42)

It follows from Lemma 4.6 and (42) that

O+ 2(141) I+1
ik FHIAD/2 R At
that is, {px} converges to zero at least @)-superlinearly.
By taking logarithms, we obtain from (42) that
0112-1X2(I+1)
We will assume that £ is sufficiently large such that pp < 1. From the above,
log fig41 i t
—— > (I+2)+1 —— /1 —(I+1)1 . 44
10g,uk —( —I_ )—I_Og 7([+1/2 /Ogluk ( —I_ )Og71 g,uk ( )

Obviously, as £k — oo, the second term in the right-hand side vanishes. If we can show that
the third term also goes to zero, then the conclusion (41) follows. Since t; < (I + 1)k + 1,
it suffices to prove

li = 0. 45
Suppose otherwise. Then there exist £ € (0,1) and a subsequence {yu;}x C {px} such that

for all £k € K

k 1
<

log i, ~ log &’
From (43), there exists a positive integer .J such that for all & > J, pp4q < %,uk. Hence, for

all k> J and k € K,
¢ fe—J
&<y < (5) -

That is, for all k£ > J and k € K, 2% < pj27 /€7, This is clearly a contradiction. [

or equivalently &% < .

6 Numerical Examples

We include some preliminary numerical results that compare the behavior of our algorithm
with the method of [18], in which improve is vacuous (I = 0).
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Our test problems have M = AAAT, where A € R™ " is dense with elements drawn
from a uniform distribution in [—1, 1], and A is a diagonal matrix with diagonal elements
Ay = 10% ) where (; is drawn from a uniform distribution in [0,1]. (We introduce this
scaling to aviod making the problems too easy.) A solution (x*,y*) is generated so that
even-numbered components of #* and odd-numbered components of y* are zero, and ¢ is
chosen so that the nonzero components of both vectors are uniformly distributed in [0, 1].

The algorithmic constants have the following values:

Ymin = 10_67 Ymax = 10_47 Omin = 10_47 Omax = -37

v =.5, p = min(\/TmaxOmin, 7) T =.8.
Experience shows that fast steps usually do not occur until g becomes quite small. Hence,
we modify the algorithm slightly so that the fast step branch of the conditional statements
in both the main algorithm and improve is not activated until ¢ < 1. This modification
does not alter any theoretical convergence properties of the algorithm.
The value of & for the safe step at major iteration k is chosen as

O = mid(aminv ﬂk/ﬁv UmaX)7

where mid() denotes the median of its three arguments. For safe steps in improve, we set
& to the constant o,y Termination occurs when py < 10719,

Performance of the algorithm for 7 = .8 and various values of I is shown in Table 1. For
each data set, we noted the number of factorizations (which equals the number of iterations
of the main algorithm), the number of back solves, and the total number of steps taken in
the improve phase. We averaged these figures over five sets of data to obtain the figures in
Table 1.

Clearly, the improve phase decreases the number of factorizations, which is the dominant
part of the cost for all reasonable problems. When M is sparse, however, the extra backsolves
and other operations required to perform each improve step are not insignificant, so we
should avoid taking an excessively large value of I. For our test problems, either I = 3 or
I = 5 would seem to be reasonable. Our tests showed that any value of 7 reasonably close
to 1 gives almost identical results to our particular choice 7 = .8.

7 Final Comments

We have analyzed an infeasible-interior-point algorithm that reuses matrix factors to accel-
erate convergence. In addition to the usual global convergence properties, the new algorithm
possesses a local convergence rate of Q-order [ + 2. Mehrotra [8] obtained the same conver-
gence rate for his feasible-interior-point predictor-corrector linear programming algorithm.
Zhang and Zhang [20] analyzed an infeasible-interior-point algorithm with I = 1 that asymp-
totically requires only one matrix factorization per iteration. However, they only obtained
()-order 2 convergence instead of ()-order 3.
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Table 1: Average performance of the algorithm for five data sets

n =20 n=200
factorizations 36.2 47.2

I =0 solves 49.8 65.2
improve steps 0 0
factorizations 26.2 36.4

I =1 solves 71.8 100.6

improve steps | 20.4 21.0
factorizations 19.4 31.6
I =3 solves 95.4 126.4
improve steps | 41.4 35.4
factorizations 17.2 30.4
I =5 solves 114.0 136.4
improve steps | 53.8 43.2

The higher-order convergence rates are mainly of theoretical interest. It is difficult to
observe convergence rate higher than cubic in numerical tests, even on very small problems.
However, reuse of matrix factors does tend to reduce the total number of factorizations
at the cost of increasing the number of back solves, as we show in our numerical results.
Since matrix factorizations are usually a good deal more expensive than back substitution,
the potential reduction in computational work could be significant for large-scale problems.
For linear programming, the practical effectiveness of reusing matrix factors is already well
documented [5, 9].
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